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1With Vera Thümmler, Sabrina Selle (Bielefeld)
and Jens Lorenz (Albuquerque)



Overview

◮ Equivariant evolution equations

◮ The freezing method

◮ nonlinear waves in 1D,2D,and 3D

◮ Relative equilibria and relative periodic orbits

◮ Asymptotic stability and freezing

◮ Decomposition of multifronts and multipulses

◮ Summary and perspectives



Equivariant evolution equations

ut = F (u), u(0) = u0,

F : Y ⊂ X → X , X Banach space,Y dense
(EV)

G a (noncompact) Lie group acting on X via

a : G × X → X , (γ, v) 7→ a(γ)v

a(γ) ∈ GL(X ), a(1) = I , a(γ1 ◦ γ2) = a(γ1)a(γ2) (Homomorph.)

F (a(γ)u) = a(γ)F (u) ∀u ∈ Y , γ ∈ G

a(γ)(Y ) ⊂ Y ∀γ ∈ G
(Equivariance)

a(·)v : γ 7→ a(γ)v continuous ∀v ∈ X ,

differentiable ∀v ∈ Y with derivative d [a(γ)v ]
(Smoothness)



Parabolic system

ut = Auxx + f (u, ux ), x ∈ R, u(x , t) ∈ Rm (PDE)

Settings: X = L2(R),Y = H2(R),R = G ,1 = 0

[a(γ)v ](x) = v(x − γ), v ∈ X , γ ∈ G ,

d [a(γ)v ] = −vx(· − γ), v ∈ Y , γ ∈ G ,

F (v) = vxx + f (v , vx ), v ∈ Y .



Parabolic system

ut = Auxx + f (u, ux ), x ∈ R, u(x , t) ∈ Rm (PDE)

Settings: X = L2(R),Y = H2(R),R = G ,1 = 0

[a(γ)v ](x) = v(x − γ), v ∈ X , γ ∈ G ,

d [a(γ)v ] = −vx(· − γ), v ∈ Y , γ ∈ G ,

F (v) = vxx + f (v , vx ), v ∈ Y .

Topics:

◮ Traveling waves (relative equilibria) come in families.

◮ Use equivariance for solving the Cauchy problem
u(x , 0) = u0(x).

◮ Relate asymptotic stability to spectrum of linearization.

◮ Use equivariance for bifurcation analysis.



The freezing method: Write the solution u(x , t) of

ut = Auxx + f (u, ux), u(x , 0) = u0(x), x ∈ R (CAUCHY)

in terms of new unknowns γ(t) ∈ R and v(·, t) as follows

u(x , t) = v(x − γ(t), t), x ∈ R, t ≥ 0.

Then solve a Partial Differential Algebraic Equation
for v(·, t), γ(t), µ(t)

vt = Avxx + f (v , vx) + µvx , v(·, 0) = u0

0 = 〈v̂x , v(·, t) − v̂〉L2 phase condition

γt = µ(t), γ(0) = 0

(PDAE)

◮ v̂ a template function, details below,

◮ traveling wave u(x , t) = v̄(x − ct) is an equilibrium of
(PDAE),

◮ The systems (PDAE) and (CAUCHY) are equivalent on R,
but have different longtime behavior on [x−, x+].



Phase conditions

◮ Fixed phase condition:
Require ‖v̂(· − γ) − v(·, t)‖L2 to be minimal at γ = 0 for
some template function v̂ . Leads to 0 = 〈v̂x , v(·, t) − v̂〉.
DAE of index 2: Differentiate w.r.t. t and obtain

0 = 〈v̂x , vt〉 = µ〈v̂x , vx〉 + 〈v̂x , vxx + f (v , vx )〉 =: ψfix(v , µ)

◮ Orthogonality condition
Require ‖vt(·, t)‖L2 to be minimal at each t, so necessarily
0 = d

dµ
||Avxx + f (v , vx) + µvx ||2L2

at µ = µ(t),
leads to a DAE of index 1

0 = µ〈vx , vx 〉 + 〈vx , vxx + f (v , vx)〉 =: ψorth(v , µ)



FitzHugh-Nagumo wave

Vt = ∆V + V − 1

3
V 3 − R+µVx ,

Rt = φ(V + a − bR)+µRx

J = [0, 130], ∆x = 0.5, ∆t = 0.01,a = 0.7,b = 0.8, φ = 0.08.
Upwind/downwind for convective term µvx

vx ≈ D±v = αD+v + (1 − α)D−v , α = (1 + e
−βλ)−1, β = 1

traveling vs. frozen ψorth vs. ψfix phase condition



Generalization to equivariant equations ut = F (u)
Introduce γ(t) ∈ G , v(t) ∈ Y and write

u(t) = a(γ(t))v(t)

Add a phase condition on v

ψ(v) = 0, where ψ : Y 7→ A∗

A∗ = L[A,R] dual of A = T1G (Lie algebra)

u0

v(t)

a(γ(t)) u(t) = a(γ(t))v(t)

O(v(t))

O(u0) = {a(γ)u0 : γ ∈ G} group orbit

Tu0O(u0) = {d [a(γ)u0]µ : µ ∈ TγG} tangent space



Resulting equation
Insert u(t) = a(γ(t))v(t) into (EV)

a(γ)F (v) = F (a(γ)v) = F (u) = ut = a(γ)vt + d [a(γ)v ]γt

Introduce µ(t) = µ ∈ A = T1G (Lie algebra) via γt = dLγ(1)µ,
where dLγ is the derivative of Lγ : G → G , g 7→ γ ◦ g .
Solve for γ(t) ∈ G , µ(t) ∈ A,v(t) ∈ Y

vt = F (v) − d [a(1)v ]µ, v(0) = u0

γt = dLγ(1)µ, γ(0) = 1
0 = ψ(v , µ)

(DAEV)

◮ related approach: Rowley, Kevrekidis, Marsden and Lust 2003

◮ The term d [a(1)v ]µ in (DAEV)is obtained by applying d
dg

to
a(γ)a(g)v = a(Lγg)v at g = 1

a(γ)d [a(1)v ]µ = d [a(γ)v ]dLγ(1)µ for all µ ∈ A.



Reaction diffusion systems in R2

ut = ∆u + f (u), t ≥ 0

u(x , 0) = u0(x), x ∈ R2

Action of Euclidean group

G = SE (2) = S1
⋉ R2 ∋ γ = (φ, τ)

[a(γ)v ](x) = v(R−φ(x − τ))

with the rotations
Rφ =

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

group operation

(φ1, τ1) ◦ (φ2, τ2) = (φ1 + φ2, τ1 + Rφ1
τ2)



Reaction diffusion systems in R2

ut = ∆u + f (u), t ≥ 0

u(x , 0) = u0(x), x ∈ R2

Action of Euclidean group

G = SE (2) = S1
⋉ R2 ∋ γ = (φ, τ)

[a(γ)v ](x) = v(R−φ(x − τ))

with the rotations
Rφ =

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

group operation

(φ1, τ1) ◦ (φ2, τ2) = (φ1 + φ2, τ1 + Rφ1
τ2)

symmetry terms (angular and translational velocities)

d [a(1)v ]µ = µ1(yvx − xvy ) + µ2vx + µ3vy



Quintic Ginzburg Landau equation, 2d

ut = α∆u + δu + β|u|2u + γ|u|4u, (x , y) ∈ R2, u(x , y , t) ∈ C
α = 0.5(1 + i), δ = −0.5, β = 2.5 + i , γ = −1 − 0.1i ,
a(γ)v(ξ) = e iθv(R−φ(ξ − τ)) for γ = (φ, τ, θ) ∈ G = SE (2) × S1,



Quintic Ginzburg Landau equation, 2d

ut = α∆u + δu + β|u|2u + γ|u|4u
+ µ1(yux − xuy ) + µ2ux + µ3uy + µ4iu

0 = 〈yu0,x − xu0,y , u − u0〉L2
, 0 = 〈iu0, u − u0〉L2

0 = 〈u0,x , u − u0〉L2
, 0 = 〈u0,y , u − u0〉L2

α = 0.5(1 + i), δ = −0.5, β = 2.5 + i , γ = −1 − 0.1i ,
a(γ)v(ξ) = e iθv(R−φ(ξ − τ)) for γ = (φ, τ, θ) ∈ G = SE (2) × S1,

Computation with FEM package COMSOL Multiphysics,
Neumann b.c.



Scroll waves in R3: CGL-system

ut = ∆u + (1 − |u|2 − i |u|2)u, x ∈ R3, u(x , t) ∈ C
Action of Euclidean group

G = SE (3) = SO(3) ⋉ R3, γ = (R , τ)

[a(γ)v ](x) = v(R−1(x − τ))

group operation γ ◦ γ̃ = (RR̃, τ + R τ̃)



Scroll waves in R3: CGL-system

ut = ∆u + (1 − |u|2 − i |u|2)u, x ∈ R3, u(x , t) ∈ C
Action of Euclidean group

G = SE (3) = SO(3) ⋉ R3, γ = (R , τ)

[a(γ)v ](x) = v(R−1(x − τ))

group operation γ ◦ γ̃ = (RR̃, τ + R τ̃)

vt = ∆v + (1 − |v |2 − i |v |2)v+µ4vx1 + µ5vx2 + µ6vx3

+µ1(vx2x3 − vx3x2) + µ2(vx3x1 − vx1x3) + µ3(vx1x2 − vx2x1)

corresponding phase conditions

Numerical solution with adaptation of ezscroll (Barkley ’97)
Lxi

= 40, ∆xi = 1, ∆t = 3
810−3, 19-point Laplacian,

boundary conditions: x, y - Neumann, z - periodic
initial function u0(r , ϕ, z) = exp( iz

2π
) r
40 (cos(ϕ) + i sin(ϕ))



Scroll wave in 3d

initial cond., x,y,x-slices through origin isosurface, Re(u)=0

solution at t = 300, x,y,x-slices through origin isosurface, Re(u)=0



Relative equilibria and relative periodic orbits

Definition: A solution u(t) = a(γ(t))v̄ , v̄ ∈ Y , γ ∈ C 1(R+,G ) of
ut = F (u) is called a relative equilibrium.
Likewise, a solution u(t) = a(γ(t))v̄ (t) is called a relative periodic
orbit if v̄(t) has nontrivial period T > 0.

Characterization: Assume d [a(1)v̄ ] : A 7→ X is one to one. Then
a(γ(t))v̄ is a relative equilibrium iff there exists µ̄ ∈ A such that v̄

is a steady state of

vt = F (v) − d [a(1)v ]µ̄ (PDAE)

and
γt = dLγ(1)µ̄ (RE)

Solution of (RE): γ(t) = exp(tµ̄)γ(0).



Asymptotic stability and freezing
Goal: Stability of relative equilibrium with asymptotic phase turns
into Liapunov stability of the pair (v̄ , µ̄) .
Stability with asymptotic phase:
A relative equilibrium a(γ(t))v̄ is called stable with asymptotic
phase if ∀ε > 0, ∃δ > 0 such that for all solutions of ut = F (u)
with ||u(0) − v̄ || ≤ δ there exists γ0(t) ∈ G satisfying

‖u(t) − a(γ0(t))v̄‖
{

≤ ǫ, ∀t ≥ 0

→ 0 for t → ∞.

(Meta)Theorem: Stability with asymptotic phase holds if and
only if (v̄ , µ̄) ∈ Y ×A is an asymptotically stable equilibrium of

vt = F (v) − d [a(1)v ]µ, v(0) = u0

γt = dLγ(1)µ, γ(0) = 1
0 = ψ(v , µ)

(DAEV)

in the Lyapunov sense for all consistent initial data.
Results: Traveling waves in 1D, rotating waves in 2D.



Stability of two-dimensional rotating patterns
with J.Lorenz DPDE, 2009.
For the reaction diffusion system in R2

ut = A∆u + f (u), u(x , 0) = u0(x) x ∈ R2, t ≥ 0 (RD)

consider a rigidly rotating localized pattern

u(x , t) = v̄(R−ctx), c > 0,Rθ =

(

cos θ − sin θ
sin θ cos θ

)

(LP)

◮ sup|x |≥R |v̄(x) − u∞| → 0 as R → ∞,

◮ f (u∞) = 0 and f ′(u∞) ≤ −βI < 0,

◮ the eigenvalues ±ic with eigenvector D1v̄ ± iD2v̄ and 0 with
eigenvector Dφv̄ are simple for the linearized operator
L = A∆ + cDφ + f ′(v̄) in H2

Eucl = {u ∈ H2 : Dφu ∈ L2},
◮ L has no further eigenvalues s ∈ C with Re (s) ≥ −β.



Nonlinear stability for rotating localized 2D-patterns

Theorem (with J. Lorenz)

Under the assumptions above there exists an ε > 0 such that for

any solution of (RD) satisfying ||u0 − v̄ ||H2 ≤ ε there is a

C 1-function γ(t) = (θ(t), τ(t)) ∈ SE (2) and (θ∞, τ∞) ∈ SE (2)
with

||u(·, t) − a(γ(t))v̄ ||H2 ≤ C exp(−β
2

t)||u0 − v̄ ||H2

|θ(t) + ct − θ∞| + |τ(t) − τ∞| ≤ C exp(−β
2

t)||u0 − v̄ ||H2

From the proof:
◮ L = A∆ + cDφ + f ′(v̄) not sectorial, σess(L) contains curves,

s = λj(κ) + inc , n ∈ Z, κ ∈ R, λj(κ) ev. of −κ2A + f ′(u∞).
◮ Compact perturbation theorem for C 0-semigroups applies in

H2 after splitting off the trivial eigenvalues ±ic , 0,
◮ Use Sobolev and Gagliardo Nirenberg estimates in H2.

Remark: Convergence of freezing method still to be proved.



Essential spectrum
Linearization in polar coordinates

L = A

(

D2
r +

1

r
Dr +

1

r2
D2

φ

)

+ cDφ + f ′(v̄(r , φ))

In the far field (r = ∞): Lfar = AD2
r + cDφ + f ′(u∞).

Find solutions of ut = Lfaru that take the form
u(r , φ, t) = este inφe iκrv , r ≥ 0, φ ∈ [0, 2π] for some v ∈ Cm,

det(−κ2A + inc + f ′(u∞) − s) = 0 dispersion relation

Theorem
If s satisfies the dispersion relation for some κ ∈ R, n ∈ Z, then

s ∈ σess(L).

Method of proof: For uR(r , φ) = χRe i(nφ+κr)v

(v an eigenvector, χR a cut-off function) show

‖(L − s)uR‖L2 ≤ C , ‖uR‖L2 ≥ C
√

R



Example: Quintic Ginzburg Landau

ut = α∆u + δu + β|u|2u + γ|u|4u, (x , y) ∈ R2, t ≥ 0.

Infinitely many copies of two half lines

s = −κ2α+ inc + δ, s = −κ2ᾱ+ inc + δ̄, κ ∈ R, n ∈ Z.
Data: α = 1+i

2 , δ = −1
2 < 0

essential spectrum: s = inc + δ − κ2(α1 ± iα2), κ ∈ R, n ∈ Z



Generic picture of full spectrum

isolated eigenvalues
essential spectrum

Essential spectrum, critical eigenvalues, and further isolated
eigenvalues

Semigroup etL is continuous but not analytic !



Part of numerical spectrum: 400 ev, system size ≈ 105

−4 −3 −2 −1 0 1
−6

−4

−2

0

2

4

6
R=30, hmax=0.25, neig=400

8 additional pairs of isolated eigenvalues.



Real parts of eigenfunctions
2 critical and 8 extra isolated eigenvalues, 2 ’non-eigenvalues’



Freezing Multifronts and Multipulses
W.-J.B.,Selle,Thümmler, 2008.

ut = uxx + f (u), x ∈ R, t ≥ 0, u(x , t) ∈ Rm

u(x , 0) = u0(x), x ∈ R
Ansatz for decomposition into single fronts

u(x , t) =

N
∑

j=1

vj(x − gj(t), t), gj(t) position of j-front at time t

Take a bump function ϕ ∈ C∞(R,R) such that
0 < ϕ(x) ≤ 1 ∀x ∈ R
and use a partition of unity depending on positions gj

Qj(g , x) =
ϕ(x − gj )

∑N
k=1 ϕ(x − gk)

, x ∈ R, j = 1, . . . ,N.

Insert ansatz into the PDE.



Abbreviate vk(·) = vk(· − gk(t), t) and find

ut =

N
∑

j=1

[vj ,t(·) − vj ,x(·)gj ,t ]

=

N
∑

j=1

[

vj ,xx(·) + Qj(g , ·)f
(

N
∑

k=1

vk(·)
)]

=

N
∑

j=1

[

vj ,xx + f (vj) + Qj(g , ·)
(

f

(

N
∑

k=1

vk(·)
)

−
N
∑

k=1

f (vk(·))
)]

.

Require that the terms [. . . . . .] in the first and in the third sum
match.



Set

ξ = x − gj(t), j = 1, . . . ,N

∗kj = ξ − gk(t) + gj (t) j , k = 1, . . . ,N.

Then a sufficient condition for the system to be satisfied is

vj ,t(ξ, t) = vj ,ξξ(ξ, t) + vj ,ξ(ξ, t)µj(t) + f (vj(ξ, t))

+
ϕ(ξ)

∑N
k=1 ϕ(∗kj )

[

f

(

N
∑

k=1

vk(∗kj , t)

)

−
N
∑

k=1

f (vk(∗kj , t))

]

0 = 〈vj(·, t) − v̂j , v̂j ,x〉L2, vj(·, 0) = v0
j (·),

gj ,t = µj , gj (0) = gj ,0.

◮ PDAE-System with nonlinear and nonlocal coupling.

◮ Decomposition is generally not unique !

◮ For fronts one needs a modified version.

◮ Solve the above system on a finite interval [x−, x+].



Nagumo equation

Nagumo equation

ut = uxx + u(1 − u)(u − a), x ∈ R, t ≥ 0, a =
1

4



Recall the FitzHugh-Nagumo wave

Vt = ∆V + V − 1

3
V 3 − R+µVx ,

Rt = φ(V + a − bR)+µRx

J = [0, 130], ∆x = 0.5, ∆t = 0.01,a = 0.7,b = 0.8, φ = 0.08.
Upwind/downwind for convective term µvx

vx ≈ D±v = αD+v + (1 − α)D−v , α = (1 + e
−βµ)−1, β = 1

traveling vs. frozen ψorth vs. ψfix phase condition



Decompose and freeze

Theory (S. Selle 2009)
Asymptotic stability with asymptotic phase for the coupled system
with nonlocal terms in case of weak interaction, i.e. initial data are
close to a superposition of waves that are far apart and that are
asymptotically stable individually.
Related work on the original equation by D.Wright 2008/09.



Summary
◮ Freezing allows to adaptively compute moving coordinate

systems for equivariant PDEs
◮ Leads to (P)DAEs of index 1 or 2 with additional convective

terms
◮ For parabolic systems in 1D the effects of the transformation

PDE
freezing−→ PDAE

discretization−→ DAE have been analyzed
◮ Stability with asymptotic phase is converted into Lyapunov

stability (proved for traveling waves in parabolic and certain
hyperbolic systems, almost proved for 2D-rotating patterns in
parabolic systems).

◮ Works for numerical examples in 1D-3D. Artificial convection
can create problems for discretizations.

◮ Multifronts and multipulses with different speeds can be
frozen independently (B.,Selle,Thümmler 2008),
nonlinear stability theorem for the case of weak interaction
(Selle 2009).



Perspectives

◮ freezing of relative equilibria for different types of equations

◮ viscous conservation laws,
◮ Nonlocal diffusion terms,
◮ SPDEs (G.Lord, V.Thümmler)

◮ More general equivariance b(γ)F (u) = F (a(γ)u)
occurs when rescaling time, see Rowley et al.2003

◮ Stability proofs for the PDAE formulation in dimensions ≥ 2

◮ Systems with relative periodic orbits and their direct
computation (Wulff,Schebesch 2006, Champneys,
Sandstede 2007)

◮ Extension of the ’decompose and freeze’ approach
to multistructures in dimensions ≥ 2.
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