# A low-dimensional model of separation bubbles

Rouslan Krechetnikov (UCSB), Jerrold Marsden (Caltech), Hassan Nagib (IIT)

Workshop on Bifurcation Analysis and its Applications

Montreal, July 7-10, 2010

## Introduction Outline

 Objective: development of a physically motivated low-dimensional model of aerodynamic separation bubble dynamics suitable for control purposes.

## Introduction Outline

- Objective: development of a physically motivated low-dimensional model of aerodynamic separation bubble dynamics suitable for control purposes.
- **Methodology**: use of analogies with other physical phenomena and basic mechanical/dynamical systems principles.

## Introduction Outline

- Objective: development of a physically motivated low-dimensional model of aerodynamic separation bubble dynamics suitable for control purposes.
- Methodology: use of analogies with other physical phenomena and basic mechanical/dynamical systems principles.
- Outcome:

## Introduction Outline

- Objective: development of a physically motivated low-dimensional model of aerodynamic separation bubble dynamics suitable for control purposes.
- Methodology: use of analogies with other physical phenomena and basic mechanical/dynamical systems principles.
- Outcome:
  - explanation of the nature of observed hysteresis;

## Introduction Outline

- Objective: development of a physically motivated low-dimensional model of aerodynamic separation bubble dynamics suitable for control purposes.
- Methodology: use of analogies with other physical phenomena and basic mechanical/dynamical systems principles.
- Outcome:
  - explanation of the nature of observed hysteresis;
  - suggestion of a number of non-trivial questions to be answered experimentally;

## Introduction Outline

- Objective: development of a physically motivated low-dimensional model of aerodynamic separation bubble dynamics suitable for control purposes.
- Methodology: use of analogies with other physical phenomena and basic mechanical/dynamical systems principles.
- Outcome:
  - explanation of the nature of observed hysteresis;
  - suggestion of a number of non-trivial questions to be answered experimentally;
  - model based on intuitive physical variables.

What is the separation<sup>a</sup>?



<sup>&</sup>lt;sup>a</sup>Multimedia Fluid Mechanics, Homsy et al. (2001)

What is the separation<sup>a</sup>?



Historical remark: term "separation bubble" is due to Jones (1933).

<sup>&</sup>lt;sup>a</sup>Multimedia Fluid Mechanics, Homsy et al. (2001)

Physical motivation

• Why control separation?: DV shedding yields (a) losses in lift, (b) sharp increases in drag, (c) destructive pitching moments.

- Why control separation?: DV shedding yields (a) losses in lift,
   (b) sharp increases in drag,
   (c) destructive pitching moments.
- Currently, reattachment over lifting surfaces is achieved by

- Why control separation?: DV shedding yields (a) losses in lift,
   (b) sharp increases in drag,
   (c) destructive pitching moments.
- Currently, reattachment over lifting surfaces is achieved by
  - Mechanical actuation operating as momentum injector

- Why control separation?: DV shedding yields (a) losses in lift,
   (b) sharp increases in drag,
   (c) destructive pitching moments.
- Currently, reattachment over lifting surfaces is achieved by
  - Mechanical actuation operating as momentum injector
  - Fluidic actuation

| time-invariant (50's)     | substantial mass and momentum flux |
|---------------------------|------------------------------------|
| temporally variant (80's) | zero or small mass flux            |

#### Physical motivation

- Why control separation?: DV shedding yields (a) losses in lift, (b) sharp increases in drag, (c) destructive pitching moments.
- Currently, reattachment over lifting surfaces is achieved by
  - Mechanical actuation operating as momentum injector
  - Fluidic actuation

| time-invariant (50's)     | substantial mass and momentum flux |
|---------------------------|------------------------------------|
| temporally variant (80's) | zero or small mass flux            |

• Why feedback control?: It is more efficient and reliable versus open loop control based on actuator operating schedule.

- Why control separation?: DV shedding yields (a) losses in lift,
   (b) sharp increases in drag,
   (c) destructive pitching moments.
- Currently, reattachment over lifting surfaces is achieved by
  - Mechanical actuation operating as momentum injector
  - Fluidic actuation

| time-invariant (50's)     | substantial mass and momentum flux |
|---------------------------|------------------------------------|
| temporally variant (80's) | zero or small mass flux            |

- Why feedback control?: It is more efficient and reliable versus open loop control based on actuator operating schedule.
- How to control?: Via model-based observer, which should be

- Why control separation?: DV shedding yields (a) losses in lift,
   (b) sharp increases in drag,
   (c) destructive pitching moments.
- Currently, reattachment over lifting surfaces is achieved by
  - Mechanical actuation operating as momentum injector
  - Fluidic actuation

| time-invariant (50's)     | substantial mass and momentum flux |
|---------------------------|------------------------------------|
| temporally variant (80's) | zero or small mass flux            |

- Why feedback control?: It is more efficient and reliable versus open loop control based on actuator operating schedule.
- How to control?: Via model-based observer, which should be
  - low-dim, for computational efficiency in real flight;

- Why control separation?: DV shedding yields (a) losses in lift,
   (b) sharp increases in drag,
   (c) destructive pitching moments.
- Currently, reattachment over lifting surfaces is achieved by
  - Mechanical actuation operating as momentum injector
  - Fluidic actuation

| time-invariant (50's)     | substantial mass and momentum flux |
|---------------------------|------------------------------------|
| temporally variant (80's) | zero or small mass flux            |

- Why feedback control?: It is more efficient and reliable versus open loop control based on actuator operating schedule.
- How to control?: Via model-based observer, which should be
  - low-dim, for computational efficiency in real flight;
  - physically motivated, to reflect actual behavior.

## Introduction

#### Closed-loop dynamic control system



**Figure:** The key dynamic elements—bifurcation and hysteresis—to be captured by the minimal number of parameters, namely the bubble size x, the angle of attack  $\alpha$ , and the actuation amplitude w.

#### Approaches to low-dimensional modeling

• **POD** methods (Kosambi, 1943)

Disadvantages: (a) unreliable for open flows, (b) physical mechanisms remain uncovered, (c) need a full solution.

#### Approaches to low-dimensional modeling

- POD methods (Kosambi, 1943)
   Disadvantages: (a) unreliable for open flows, (b) physical mechanisms remain uncovered, (c) need a full solution.
- Indical theory (Tobak et al., 1984)
   Disadvantages: (a) linearization anzatz, (b) physical mechanisms remain uncovered, (c) need a full solution.

#### Approaches to low-dimensional modeling

- POD methods (Kosambi, 1943)
   Disadvantages: (a) unreliable for open flows, (b) physical mechanisms remain uncovered, (c) need a full solution.
- Indical theory (Tobak et al., 1984)
   Disadvantages: (a) linearization anzatz, (b) physical mechanisms remain uncovered, (c) need a full solution.
- Phenomenology (Magill et al., 2003)
   Advantages: (a) physically motivated, (b) no solution required.

#### Approaches to low-dimensional modeling

- POD methods (Kosambi, 1943)
   Disadvantages: (a) unreliable for open flows, (b) physical mechanisms remain uncovered, (c) need a full solution.
- Indical theory (Tobak et al., 1984)
   Disadvantages: (a) linearization anzatz, (b) physical mechanisms remain uncovered, (c) need a full solution.
- Phenomenology (Magill et al., 2003)
   Advantages: (a) physically motivated, (b) no solution required.

**Classical example** of the successful phenomenology: Landau equation (Landau, 1944; Stuart, 1960):

$$\frac{\mathrm{d}A}{\mathrm{d}t} = A - \gamma A |A|^2.$$

State-of-the-art low dimensional model<sup>a</sup>

- Physical variables:

  - (i) lift Z (ii) separation state  $B = \left\{ \begin{array}{l} 0, \mathrm{fully\ attached} \\ 1, \mathrm{fully\ separated} \end{array} \right.$



a Magill et al., 2003

#### State-of-the-art low dimensional model<sup>a</sup>

- Physical variables:

  - (i) lift Z (ii) separation state  $B = \begin{cases} 0, \text{fully attached} \\ 1, \text{fully separated} \end{cases}$
- Physical arguments:
  - (i) lift  $Z \sim \text{circulation } \Gamma(\alpha)$ ;
  - (ii)  $\lim_{t \to +\infty} B(t) = B_s(\alpha)$  (relaxation to a steady state);
  - (iii)  $Z \sim B_t$  (rise in lift when a DV is shed)



#### State-of-the-art low dimensional model<sup>a</sup>

- Physical variables:

  - (i) lift Z (ii) separation state  $B = \begin{cases} 0, \text{fully attached} \\ 1, \text{fully separated} \end{cases}$
- Physical arguments:
  - (i) lift  $Z \sim \text{circulation } \Gamma(\alpha)$ :
  - (ii)  $\lim_{t \to +\infty} B(t) = B_s(\alpha)$  (relaxation to a steady state);
  - (iii)  $Z \sim B_t$  (rise in lift when a DV is shed)
- The simplest low-order model

$$B_{tt} = -k_1 B_t + k_2 [B_s(\alpha) - B],$$
  

$$Z_t = k_3 B_{tt} + k_4 [Z_s(\alpha) - Z] + \Gamma_{\alpha} \alpha_t.$$



#### State-of-the-art low dimensional model<sup>a</sup>

- Physical variables:

  - (i) lift Z (ii) separation state  $B = \begin{cases} 0, \text{fully attached} \\ 1, \text{fully separated} \end{cases}$
- Physical arguments:
  - (i) lift  $Z \sim \text{circulation } \Gamma(\alpha)$ :
  - (ii)  $\lim_{t \to +\infty} B(t) = B_s(\alpha)$  (relaxation to a steady state);
  - (iii)  $Z \sim B_t$  (rise in lift when a DV is shed)
- The simplest low-order model

$$B_{tt} = -k_1 B_t + k_2 [B_s(\alpha) - B],$$
  

$$Z_t = k_3 B_{tt} + k_4 [Z_s(\alpha) - Z] + \Gamma_{\alpha} \alpha_t.$$

#### Question: is this linear model adequate?

#### Physics of actuation

• *Mechanism*: the excitation (vs. forcing) generates Large Coherent Structures transferring high momentum fluid towards the surface:



#### Introduction

#### Physics of actuation

• *Mechanism*: the excitation (vs. forcing) generates Large Coherent Structures transferring high momentum fluid towards the surface:



- Threshold for actuation to achieve reattachment and effects of amplitude w and frequency  $\omega$  of actuation on bubble size x (Nishri & Wygnanski, 1998)
- Re-separation phenomena (Krechetnikov & Lipatov, 2000)



Physics of actuation (continued)

• Primary bifurcation in two basic experimental models:





Physics of actuation (continued)

• Primary bifurcation in two basic experimental models:



• Hysteresis behavior in all  $(\alpha, w, \omega)$ , (Nishri & Wygnanski, 1998; Greenblatt *et al.* 2001).





Physics of actuation (continued)

• Primary bifurcation in two basic experimental models:





- Hysteresis behavior in all  $(\alpha, w, \omega)$ , (Nishri & Wygnanski, 1998; Greenblatt et al. 2001).
- Conclusion: a model should be nonlinear.



Motivation from real bubbles

Deformation of a bubble in a four-roll mill (Taylor, 1934) straining flow (Kang & Leal, 1990):



#### Motivation from real bubbles

**Deformation of a bubble in a four-roll mill** (Taylor, 1934) straining flow (Kang & Leal, 1990):



lacktriangle Let x be a scalar measure of deformation from sphericity. Linear oscillation theory (Lamb, 1932) of a spherical bubble + steady state weakly nonlinear deformation theory:

$$\ddot{x} = -\mu \dot{x} + (ax - bx^2) + w,$$
  

$$w = w_0 + w_1 \cos \omega t.$$



#### Motivation from real bubbles

**Deformation of a bubble in a four-roll mill** (Taylor, 1934) straining flow (Kang & Leal, 1990):



• Let x be a scalar measure of deformation from sphericity. Linear oscillation theory (Lamb, 1932) of a spherical bubble + steady state weakly nonlinear deformation theory:

$$\ddot{x} = -\mu \dot{x} + (ax - bx^2) + w,$$
  

$$w = w_0 + w_1 \cos \omega t.$$

Bifurcation type: Takens-Bogdanov



#### A new model: determination of variables

• Since the separation is associated with the *separation region*, it is natural to describe it with the variable representing some characteristic of a separation bubble, e.g. the bubble size x.

#### A new model: determination of variables

- Since the separation is associated with the *separation region*, it is natural to describe it with the variable representing some characteristic of a separation bubble, e.g. the bubble size x.
- Bifurcation from reattached to separated state:





#### A new model: determination of variables

- Since the separation is associated with the *separation region*, it is natural to describe it with the variable representing some characteristic of a separation bubble, e.g. the bubble size x.
- Bifurcation from reattached to separated state:





Naturally, the bubble size  $x(t; \alpha, w)$  is a function of time t, a flight parameter, angle of attack  $\alpha$ , and a control parameter w:

$$\ddot{x} + \mu \dot{x} = F(x, w, \alpha),$$

with minimal quadratic nonlinearity  $F(x, w, \alpha) = x^2 + b(w, \alpha)x + b(w, \alpha)x$  $c(w,\alpha)$ .

## Bifurcation

Potential function approach



(a) Potential function for a finite bubble.



(b) Potential function for an infinite bubble.

**Figure:** Potential function  $V(x) = -\frac{x^3}{3} - b(w)\frac{x^2}{2} - c(w)x - d(w)$ with d = 0, c = 0.



## Bifurcation

A new model: construction and analysis

The model is a part of the Takens-Bogdanov bifurcation:

$$\ddot{x} = -\mu \dot{x} + (x - \alpha)^2 + f(w) x.$$



(a) controlled



(b) uncontrolled

## Bifurcation

A new model: construction and analysis

The model is a part of the Takens-Bogdanov bifurcation:

$$\ddot{x} = -\mu \dot{x} + (x - \alpha)^2 + f(w)x.$$







(b) uncontrolled

• Here  $f(w) = a_1w + a_2w^2 + \dots$  represents the nonlinear response of the separation region to actuator excitations, for instance, of a periodic form  $w = w_0 \sin \omega t$ . The product  $f(w) \times m$  means that the effect of actuation depends upon the bubble size x.

## A new model: construction and analysis

The model is a part of the Takens-Bogdanov bifurcation:

$$\ddot{x} = -\mu \dot{x} + (x - \alpha)^2 + f(w)x.$$





(a) controlled

- (b) uncontrolled
- Here  $f(w) = a_1w + a_2w^2 + \dots$  represents the nonlinear response of the separation region to actuator excitations, for instance, of a periodic form  $w = w_0 \sin \omega t$ . The product  $f(w) \times m$  means that the effect of actuation depends upon the bubble size x.
- Prediction: separation bubble should be finite-amplitude unstable.

### Concept of dynamic bifurcation



**Figure:** Critical curve in the (x, w)-plane: on the dynamic bifurcation; solid black line represents stable equilibria, dot-dash line is a dynamic bifurcation when bubble grows indefinitely with time.  $\lambda$ 's are the eigenvalues of the linearization around equilibrium points.

### Motivation from real bubbles

Ferrofluid drop in a magnetic field<sup>a</sup>



<sup>&</sup>lt;sup>a</sup>Bacri & Salin, 1982

## Motivation from real bubbles

Ferrofluid drop in a magnetic field<sup>a</sup>



Total energy  $E_t = E_s + E_m$  is a sum of magnetic  $E_m$  and interfacial  $E_s$  contributions:

$$\begin{split} E_s &= \sigma 2\pi a^2 e \left[ e + \epsilon^{-1} \sin^{-1} \epsilon \right], \; \epsilon = \sqrt{1-e^2} \\ E_m &= -\frac{VH^2}{8\pi} \frac{\mu_1}{\alpha + n}, \; \alpha = \frac{\mu_1}{\mu_2 - \mu_1}. \end{split}$$



<sup>&</sup>lt;sup>a</sup>Bacri & Salin, 1982

## Motivation from real bubbles

Ferrofluid drop in a magnetic field<sup>a</sup>



Total energy  $E_t = E_s + E_m$  is a sum of magnetic  $E_m$  and interfacial  $E_s$  contributions:

$$\begin{split} E_s &= \sigma 2\pi a^2 e \left[e + \epsilon^{-1} \sin^{-1} \epsilon\right], \ \epsilon = \sqrt{1 - e^2} \\ E_m &= -\frac{VH^2}{8\pi} \frac{\mu_1}{\alpha + n}, \ \alpha = \frac{\mu_1}{\mu_2 - \mu_1}. \end{split}$$

Minimizing  $E_t$  produces  $H^2/\sigma = g(e)$ .

<sup>&</sup>lt;sup>a</sup>Bacri & Salin, 1982

#### Motivation from real bubbles

Ferrofluid drop in a magnetic field<sup>a</sup>





#### Conjecture



Total energy  $E_t = E_s + E_m$  is a sum of magnetic  $E_m$  and interfacial  $E_s$  contributions:

$$\begin{split} E_s &= \sigma 2\pi a^2 e \left[ e + \epsilon^{-1} \sin^{-1} \epsilon \right], \ \epsilon = \sqrt{1 - e^2} \\ E_m &= -\frac{VH^2}{8\pi} \frac{\mu_1}{\alpha + n}, \ \alpha = \frac{\mu_1}{\mu_2 - \mu_1}. \end{split}$$

Minimizing  $E_t$  produces  $H^2/\sigma = g(e)$ .



<sup>&</sup>lt;sup>a</sup>Bacri & Salin, 1982

Motivation: separation vs. cavitating bubble

Separation bubble:



## Motivation: separation vs. cavitating bubble

### Separation bubble:



On mechanism of separation

$$p'_1 - p''_1 < p'_2 - p''_2 < p'_3 - p''_3,$$
  
 $l_1 < l_2 < l_3.$ 

$$p_1 > p_2 > p_3$$
 with  $p_i < p'_i$ ,  $i = 1, 2, 3$ .

## Motivation: separation vs. cavitating bubble

Separation bubble:



On mechanism of separation

$$p'_1 - p''_1 < p'_2 - p''_2 < p'_3 - p''_3,$$
  
 $l_1 < l_2 < l_3.$ 

$$p_1 > p_2 > p_3$$
 with  $p_i < p'_i$ ,  $i = 1, 2, 3$ .

Cavitating bubble:



## Motivation: separation vs. cavitating bubble

Separation bubble:



On mechanism of separation

$$p'_1 - p''_1 < p'_2 - p''_2 < p'_3 - p''_3,$$
 $l_1 < l_2 < l_3.$ 

$$p_1 > p_2 > p_3$$
 with  $p_i < p'_i$ ,  $i = 1, 2, 3$ .

Cavitating bubble:



Acosta (1955), Tulin (1953)

The behavior of a cavitation bubble is given by for partially cavitating, l < 1, and supercavitating, l > 1, foils respectively.

$$\frac{\chi}{2\alpha} = \frac{2-I+2(1-I)^{1/2}}{I^{1/2}(1-I)^{1/2}}, \ I < 1,$$

$$\alpha\left(\frac{2}{\chi}+1\right)=(1-I)^{1/2},\ I>1,$$

Motivation: static vs. cavitating bubble

Static bubble:



## Motivation: static vs. cavitating bubble

#### Static bubble:



Real static bubble behavior

$$p_B=2\sigma/R+p_0,$$

where  $p_B$  is the pressure inside the bubble,  $p_0$  - pressure outside the bubble,  $\sigma > 0$  is the interfacial tension, and R is a radius of the bubble.



## Motivation: static vs. cavitating bubble

#### Static bubble:



Real static bubble behavior

$$p_B = 2\sigma/R + p_0$$

where  $p_B$  is the pressure inside the bubble,  $p_0$  - pressure outside the bubble,  $\sigma > 0$  is the interfacial tension, and R is a radius of the bubble.

## Cavitating hydrofoil:



## Motivation: static vs. cavitating bubble

#### Static bubble:



Real static bubble behavior

$$p_B = 2\sigma/R + p_0$$

where  $p_B$  is the pressure inside the bubble,  $p_0$  – pressure outside the bubble,  $\sigma > 0$  is the interfacial tension, and R is a radius of the bubble.

### Cavitating hydrofoil:



Bubble behavior:

$$p + \rho u^2/2 = p_{\rm st}$$

where p is a dynamic pressure, and  $p_{st}$  is the pressure of a fluid at rest (at stagnation point).

Mechanical model of hysteresis: elastic bubble



## Mechanical model of hysteresis: elastic bubble





### Mechanical model of hysteresis: elastic bubble





The mechanical analog of a bubble:

$$p = p_0 + \widetilde{\sigma}/R$$
,  $p > p_0$ .

i.e. the bubble grows when the ambient pressure,  $p = p_{\rm st} - \rho u_{\rm max}^2/2$ , decreases.

$$\begin{split} u_{\mathrm{max}}^{\mathrm{cr},>}: \ R_0 &= \widetilde{\sigma} \left[ \rho_{\mathrm{st}} - \rho_0 - \rho \big| u_{\mathrm{max}}^{\mathrm{cr},>} \big|^2 / 2 \right]^{-1} \\ u_{\mathrm{max}}^{\mathrm{cr},<}: \ R_0 &= \widetilde{\sigma} \left[ \rho_{\mathrm{st}} - \rho_0 - \Delta \rho_0 - \rho \big| u_{\mathrm{max}}^{\mathrm{cr},<} \big|^2 / 2 \right]^{-1} \end{split}$$



### Model: potential function V(x) approach

Modified model:

$$\ddot{x} + \mu \dot{x} = -V_x(x; \alpha, w).$$



**Figure:** Hysteresis curve in the (x, w)-plane and corresponding potential functions; solid black lines represent stable equilibria, while dashed lines are unstable equilibria; dot-dash line represents a dynamic bifurcation (bubble size grows with time unboundedly).

## Conclusions

- A new physically motivated low-dimensional model of separation bubble dynamics was constructed by contrasting and appealing to similarities with actual bubble dynamics<sup>a</sup>. The latter suggested
  - the proper choice of coarse variables and primary bifurcation;
  - an explaination of the nature of the hysteresis.
- Suggestions for experimental studies to improve the model:
  - investigate the finite amplitude stability of separation bubbles;
  - determine the form of the state equation for separation bubble.
- Open issues:
  - rigorous derivation of the low-dim model by coarsening NSEs;
  - more close connection with experimental observations and development of a calibration procedure.

**Acknowledgements**. R.K. would like to thank Prof. Anatol Roshko for stimulating discussions.



<sup>&</sup>lt;sup>a</sup>Krechetnikov, Marsden, Nagib, Physica D 238, 1152 (2009)