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@ Objective: development of a physically motivated low-dimensional
model of aerodynamic separation bubble dynamics suitable for con-
trol purposes.

@ Methodology: use of analogies with other physical phenomena and
basic mechanical/dynamical systems principles.
@ Outcome:

@ explanation of the nature of observed hysteresis;

@ suggestion of a number of non-trivial questions to be
answered experimentally;

@ model based on intuitive physical variables.
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What is the separation??

30° 40° 50°

Historical remark: term “separation bubble” is due to Jones (1933).

?Multimedia Fluid Mechanics, Homsy et al. (2001)
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Physical motivation

@ Why control separation?: DV shedding yields (a) losses in lift,
(b) sharp increases in drag, (c) destructive pitching moments.

@ Currently, reattachment over lifting surfaces is achieved by

@ Mechanical actuation operating as momentum injector
@ Fluidic actuation

time-invariant (50's) ‘ substantial mass and momentum flux
temporally variant (80’s) ‘ zero or small mass flux

@ Why feedback control?: It is more efficient and reliable versus
open loop control based on actuator operating schedule.

@ How to control?: Via model-based observer, which should be

@ Jow-dim, for computational efficiency in real flight;
@ physically motivated, to reflect actual behavior.

BAA-2010: Montreal, QC - p. 4/ 20



Introduction Outline Background Approaches Problem formulation

Introduction

Closed-loop dynamic control system

xT
actuator Sensors -
./btfurcatton

_ hysteresis
. / w

decision |
making || observer

(04
(a) Feedback control. (b) State space.

Figure: The key dynamic elements—bifurcation and hysteresis—to be
captured by the minimal number of parameters, namely the bubble size
x, the angle of attack «, and the actuation amplitude w.

BAA-2010: Montreal, QC - p. 5/ 20



Introduction Outline Background Approaches Problem formulation

Introduction

Approaches to low-dimensional modeling

@ POD methods (Kosambi, 1943)
Disadvantages: (a) unreliable for open flows, (b) physical mecha-
nisms remain uncovered, (c) need a full solution.
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Approaches to low-dimensional modeling

@ POD methods (Kosambi, 1943)
Disadvantages: (a) unreliable for open flows, (b) physical mecha-
nisms remain uncovered, (c) need a full solution.

@ Indical theory (Tobak et al., 1984)
Disadvantages: (a) linearization anzatz, (b) physical mechanisms
remain uncovered, (c) need a full solution.

@ Phenomenology (Magill et al., 2003)
Advantages: (a) physically motivated, (b) no solution required.

Classical example of the successful phenomenology: Landau equation
(Landau, 1944; Stuart, 1960):

dA )
L A—AAIAPR.
T YAA|
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State-of-the-art low dimensional model?

@ Physical variables:

Ei))“ft Z i state g — {0 fully attached
'l) separation state & = 1, fully separated

@ Physical arguments:
(i) lift Z ~ circulation I'(«);
(i) . liT B(t) = Bs(«a) (relaxation to a steady state);
—+00
(iii) Z ~ By (rise in lift when a DV is shed)
@ The simplest low-order model
Byt = —k1B; + ky [Bs(a) — B],
Zt = k3Btt + k4 [Zs(Oé) — Z] + raat.

Question: is this linear model adequate?

?Magill et al., 2003
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Physics of actuation

e Mechanism: the excitation (vs. forcing) generates Large Coherent Struc-
tures transferring high momentum fluid towards the surface:

‘mixit T

- laye - layer -
- — - o~ - x
e e e
- - -
- - -
(a) no excitation (b) weak excitation (C) strong excita-

BAA-2010: Montreal, QC - p. 8/ 20




Introduction

Introduction

Outline Background Approaches Problem formulation

Physics of actuation
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tures transferring high momentum flu
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ng) generates Large Coherent Struc-
id towards the surface:

mixing
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zone

(a) no excitation (b) weak excitation (C) strong excita-

e Threshold for actuation to achieve
reattachment and effects of ampli-
tude w and frequency w of actuation
on bubble size x (Nishri & Wygnan-
ski, 1998)

e Re-separation phenomena (Krechet-
nikov & Lipatov, 2000)

Re

w

Separated flow
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Physics of actuation (continued)

e Primary bifurcation in two basic experimental models:

w

(a) Hump model (b) Airfoil model
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Physics of actuation (continued)

e Primary bifurcation in two basic experimental models:
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(a) Hump model (b) Airfoil model
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e Hysteresis behavior in all !
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Physics of actuation (continued)

e Primary bifurcation in two basic experimental models:

w

san
w, w,

(a) Hump model (b) Airfoil model
x

e Hysteresis behavior in all

|
(o, w,w), (Nishri & Wygnanski, z, \”}
1998; Greenblatt et al. 2001).

e Conclusion: a model should be

. | |
nonlinear. e - ,&,\ v
| ~
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@ Let x be a scalar measure of deformation from sphericity. Linear
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@ Deformation of a bubble in a four-roll mill (Taylor, 1934) strain-
ing flow (Kang & Leal, 1990):

O OE=

@ Let x be a scalar measure of deformation from sphericity. Linear
oscillation theory (Lamb, 1932) of a spherical bubble + steady state
weakly nonlinear deformation theory:

= —px + (ax — bx?) + w,

w = wy + Wy coswt.

@ Bifurcation type: Takens-Bogdanov
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A new model: determination of variables

@ Since the separation is associated with the separation region, it is
natural to describe it with the variable representing some character-
istic of a separation bubble, e.g. the bubble size x.

@ Bifurcation from reattached to separated state:

@/—\

(a) x <0 (b) x =00

@ Naturally, the bubble size x(t; a, w) is a function of time t, a flight
parameter, angle of attack «, and a control parameter w:

X+ px = F(x, w, a),

with minimal quadratic nonlinearity F(x, w,a) = x? + b(w, a) x +
c(w, ).
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Potential function approach

V(z) w>w, V(z) wew,
,?; (0,0) z (0,0) z
a »
(a) Potential function for (b) Potential function for
a finite bubble. an infinite bubble.
Figure: Potential function V(x) = —"3—3 — b(w)%z —c(w)x — d(w)

with d =0, c =0.
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X = —pk+ (x — a)® + f(w) x

(&

(a) controlled ) uncontrolled
@ Here f(w) = ayw + aw? + ... represents the nonlinear response
of the separation region to actuator excitations, for instance, of a
periodic form w = wysinwt. The product f(w)x means that the
effect of actuation depends upon the bubble size x.
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Bifurcation

A new model: construction and analysis

@ The model is a part of the Takens-Bogdanov bifurcation:

X = —pk+ (x — a)® + f(w) x

(&

(a) controlled ) uncontrolled

T

@ Here f(w) = aiw + apw? + ... represents the nonlinear response
of the separation region to actuator excitations, for instance, of a
periodic form w = wysinwt. The product f(w)x means that the
effect of actuation depends upon the bubble size x.

@ Prediction: separation bubble should be finite-amplitude unstable.
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Concept of dynamic bifurcation

Elh

both equilibria coincide

&

two different equilibria

Figure: Critical curve in the (x, w)-plane: on the dynamic bifurcation;
solid black line represents stable equilibria, dot-dash line is a dynamic bi-
furcation when bubble grows indefinitely with time. A's are the eigenvalues
of the linearization around equilibrium points.
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ab

N

@ Total energy E; = Es + En, is a sum of magnetic E;, and interfacial Es contri-

butions:
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Hysteresis

Motivation from real bubbles

@ Ferrofluid drop in a magnetic field® @ Conjecture

ab

N

@ Total energy E; = Es + En, is a sum of magnetic E;, and interfacial Es contri-

butions:
E. = 021a’e [e +elsin™t e] ,e=1/1—¢e?
VH oo M
8T a+n’ 2 — 1 ’

w, Wy

En=

@ Minimizing E; produces H?/o = g(e).

?Bacri & Salin, 1982
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@ Separation bubble:
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Motivation: separation vs. cavitating bubble

@ Separation bubble:

(RNt
,:
b

pvﬂ

Lk

@ On mechanism of separation

pi—p1 <p3— Py <p;—p3,
h < b <kh.

p1 > p2 > p3 with p; < pj, i =1,2,3.
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Motivation: separation vs. cavitating bubble

@ Separation bubble:

(RNt
,:
b

@ On mechanism of separation

pi—p1 <p3— Py <p;—p3,
h < b <kh.

p1 > p2 > p3 with p; < pj, i =1,2,3.

@ Cavitating bubble:

Acosta (1955), Tulin (1953)

@ The behavior of a cavitation bubble

is given by for partially cavitating,

| < 1, and supercavitating, | > 1,
foils respectively,

x  2—1+2(1-1)2

200 [2(1-ni2

a(3+1):(171)1/2, I>1,
X

/<1,
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@ Static bubble:
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Motivation: static vs. cavitating bubble

@ Static bubble:
o

ypo

Py

@ Real static bubble behavior

PB:20/R+P07

where pg is the pressure inside
the bubble, py — pressure out-
side the bubble, o > 0 is the
interfacial tension, and R is a
radius of the bubble.
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Hysteresis
Motivation: static vs. cavitating bubble
@ Static bubble: @ Cavitating hydrofoil:
o —
y P,
Py
@ Real static bubble behavior @ Bubble behavior:
ps =20 /R + po, p+ pu’/2 = py,
where pg is the pressure inside where p is a dynamic pres-
the bubble, py — pressure out- sure, and pg; is the pressure of
side the bubble, ¢ > 0 is the a fluid at rest (at stagnation
interfacial tension, and R is a point).

radius of the bubble.
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Hysteresis

Mechanical model of hysteresis: elastic bubble

P

fixed end —=
’
|
|
\
N
moving end =

trailing edge —
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Hysteresis

Mechanical model of hysteresis: elastic bubble
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Mechanical model of hysteresis: elastic bubble

Motivation Physical origin

P,+AP

~

— —
— —
— —
P
— R —
i Tt '
\ , \
BN = L \
=EN - 50
B ~-_-"E &
3 25
&= gé
EE

The mechanical analog of a bubble:

p=po+3/R, p> po,

i.e. the bubble grows when the ambient pressure, p =
Pst — pUZ ax/2, decreases.

~ 2,171
uRZ - Ro =75 [P — po— plustiz /2]

~ 5 1-1
uhs  Ro=7 [pa — o — Apo — pluis /2]
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Hysteresis

Model: potential function V/(x) approach

Modified model:

v | Vi)
S\

Figure: Hysteresis curve in the (x, w)-plane and corresponding potential
functions; solid black lines represent stable equilibria, while dashed lines are
unstable equilibria; dot-dash line represents a dynamic bifurcation (bubble
size grows with time unboundedly).
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Conclusions

Conclusions

@ A new physically motivated low-dimensional model of separation
bubble dynamics was constructed by contrasting and appealing to
similarities with actual bubble dynamics®. The latter suggested

@ the proper choice of coarse variables and primary bifurcation;
@ an explaination of the nature of the hysteresis.
@ Suggestions for experimental studies to improve the model:
@ investigate the finite amplitude stability of separation bubbles;
@ determine the form of the state equation for separation bubble.
@ Open issues:

@ rigorous derivation of the low-dim model by coarsening NSEs;
@ more close connection with experimental observations and
development of a calibration procedure.
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