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Introduction
Outline

Objective: development of a physically motivated low-dimensional
model of aerodynamic separation bubble dynamics suitable for con-
trol purposes.

Methodology: use of analogies with other physical phenomena and
basic mechanical/dynamical systems principles.

Outcome:

explanation of the nature of observed hysteresis;
suggestion of a number of non-trivial questions to be
answered experimentally;
model based on intuitive physical variables.
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Introduction
What is the separationa?

0◦ 10◦ 20◦

30◦ 40◦ 50◦

Historical remark: term “separation bubble” is due to Jones (1933).

aMultimedia Fluid Mechanics, Homsy et al. (2001)
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Introduction
Physical motivation

Why control separation?: DV shedding yields (a) losses in lift,
(b) sharp increases in drag, (c) destructive pitching moments.

Currently, reattachment over lifting surfaces is achieved by

Mechanical actuation operating as momentum injector
Fluidic actuation

time-invariant (50’s) substantial mass and momentum flux
temporally variant (80’s) zero or small mass flux

Why feedback control?: It is more efficient and reliable versus
open loop control based on actuator operating schedule.

How to control?: Via model-based observer, which should be

low-dim, for computational efficiency in real flight;
physically motivated, to reflect actual behavior.

BAA-2010: Montreal, QC - p. 4/ 20
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Introduction
Closed-loop dynamic control system

α

actuator

observer

sensors

decision

 making

x

(a) Feedback control.

w

x

α

bifurcation

hysteresis

(b) State space.

Figure: The key dynamic elements—bifurcation and hysteresis—to be
captured by the minimal number of parameters, namely the bubble size
x , the angle of attack α, and the actuation amplitude w .
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Introduction
Approaches to low-dimensional modeling

POD methods (Kosambi, 1943)
Disadvantages: (a) unreliable for open flows, (b) physical mecha-
nisms remain uncovered, (c) need a full solution.

Indical theory (Tobak et al., 1984)
Disadvantages: (a) linearization anzatz, (b) physical mechanisms
remain uncovered, (c) need a full solution.

Phenomenology (Magill et al., 2003)
Advantages: (a) physically motivated, (b) no solution required.

Classical example of the successful phenomenology: Landau equation
(Landau, 1944; Stuart, 1960):

dA

dt
= A− γA |A|2 .

BAA-2010: Montreal, QC - p. 6/ 20
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Introduction
State-of-the-art low dimensional modela

Physical variables:
(i) lift Z
(ii) separation state B =

{
0, fully attached
1, fully separated

Physical arguments:
(i) lift Z ∼ circulation Γ(α);
(ii) lim

t→+∞
B(t) = Bs(α) (relaxation to a steady state);

(iii) Z ∼ Bt (rise in lift when a DV is shed)

The simplest low-order model

Btt = −k1Bt + k2 [Bs(α)− B] ,

Zt = k3Btt + k4 [Zs(α)− Z ] + Γααt .

Question: is this linear model adequate?

aMagill et al., 2003

BAA-2010: Montreal, QC - p. 7/ 20
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Introduction
Physics of actuation

•Mechanism: the excitation (vs. forcing) generates Large Coherent Struc-
tures transferring high momentum fluid towards the surface:

mixing

  layer

dead-water

     zone

(a) no excitation

dead-water

     zone

mixing

  layer

(b) weak excitation (c) strong excita-

tion

• Threshold for actuation to achieve
reattachment and effects of ampli-
tude w and frequency ω of actuation
on bubble size x (Nishri & Wygnan-
ski, 1998)
• Re-separation phenomena (Krechet-

nikov & Lipatov, 2000)

w

ω

Re-separation

Reα

Re-attached

      flow

Separated flow
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Physics of actuation (continued)

• Primary bifurcation in two basic experimental models:

w

x

(a) Hump model

w

x

w c w 0

criticality

saturation

(b) Airfoil model

• Hysteresis behavior in all
(α,w , ω), (Nishri & Wygnanski,
1998; Greenblatt et al. 2001).

• Conclusion: a model should be
nonlinear.

w

x

x

x

c

sat

w w
c sat
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Bifurcation
Motivation from real bubbles

Deformation of a bubble in a four-roll mill (Taylor, 1934) strain-
ing flow (Kang & Leal, 1990):

x
x
.

Let x be a scalar measure of deformation from sphericity. Linear
oscillation theory (Lamb, 1932) of a spherical bubble + steady state
weakly nonlinear deformation theory:

ẍ = −µẋ + (ax − bx2) + w ,

w = w0 + w1 cosωt.

Bifurcation type: Takens-Bogdanov

BAA-2010: Montreal, QC - p. 10/ 20
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Bifurcation
A new model: determination of variables

Since the separation is associated with the separation region, it is
natural to describe it with the variable representing some character-
istic of a separation bubble, e.g. the bubble size x .

Bifurcation from reattached to separated state:

(a) x <∞ (b) x =∞

Naturally, the bubble size x(t;α,w) is a function of time t, a flight
parameter, angle of attack α, and a control parameter w :

ẍ + µẋ = F (x ,w , α),

with minimal quadratic nonlinearity F (x ,w , α) = x2 + b(w , α) x +
c(w , α).

BAA-2010: Montreal, QC - p. 11/ 20
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Bifurcation
Potential function approach

V(x)

x

w > wc

-b

-b/6
3

(0,0)

(a) Potential function for
a finite bubble.

V(x)

x

w < wc

(0,0)

(b) Potential function for
an infinite bubble.

Figure: Potential function V (x) = − x3

3 − b(w) x2

2 − c(w)x − d(w)
with d = 0, c = 0.
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Bifurcation
A new model: construction and analysis

The model is a part of the Takens-Bogdanov bifurcation:

ẍ = −µẋ + (x − α)2 + f (w) x .

�

�

�

�

x

x

.

x
1

x
2

(a) controlled

x

x

.

(b) uncontrolled

Here f (w) = a1w + a2w 2 + . . . represents the nonlinear response
of the separation region to actuator excitations, for instance, of a
periodic form w = w0 sinωt. The product f (w) x means that the
effect of actuation depends upon the bubble size x .

Prediction: separation bubble should be finite-amplitude unstable.
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ẍ = −µẋ + (x − α)2 + f (w) x .

�

�

�

�

x

x

.

x
1

x
2

(a) controlled

x

x

.

(b) uncontrolled

Here f (w) = a1w + a2w 2 + . . . represents the nonlinear response
of the separation region to actuator excitations, for instance, of a
periodic form w = w0 sinωt. The product f (w) x means that the
effect of actuation depends upon the bubble size x .

Prediction: separation bubble should be finite-amplitude unstable.

BAA-2010: Montreal, QC - p. 13/ 20



Introduction Bifurcation Hysteresis Conclusions Motivation New model

Bifurcation
Concept of dynamic bifurcation

x

w

wc

both equilibria coincide

two different equilibria

λ (1,2)

2
 < 0

λ (2)

2
 < 0

λ (1)

2
 < 0

Figure: Critical curve in the (x ,w)-plane: on the dynamic bifurcation;
solid black line represents stable equilibria, dot-dash line is a dynamic bi-
furcation when bubble grows indefinitely with time. λ’s are the eigenvalues
of the linearization around equilibrium points.

BAA-2010: Montreal, QC - p. 14/ 20



Introduction Bifurcation Hysteresis Conclusions Motivation Physical origin Model

Hysteresis
Motivation from real bubbles

Ferrofluid drop in a magnetic fielda

a/b

H /σ

2


Α


Β


C

D

Conjecture

w

x

x

x

c

sat

w w
c sat

Total energy Et = Es + Em is a sum of magnetic Em and interfacial Es contri-
butions:

Es = σ2πa2e
[
e + ε−1 sin−1 ε

]
, ε =

√
1 − e2

Em = −
VH2

8π

µ1

α+ n
, α =

µ1

µ2 − µ1
.

Minimizing Et produces H2/σ = g(e).

aBacri & Salin, 1982
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Hysteresis
Motivation: separation vs. cavitating bubble

Separation bubble:
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On mechanism of separation

p′1−p′′1 <p′2 − p′′2 <p′3 − p′′3 ,

l1 < l2 <l3.

p1 > p2 > p3 with pi < p′i , i = 1, 2, 3.

Cavitating bubble:

1

l

α

Acosta (1955), Tulin (1953)

The behavior of a cavitation bubble
is given by for partially cavitating,
l < 1, and supercavitating, l > 1,
foils respectively,

χ

2α
=

2 − l + 2(1 − l)1/2

l1/2(1 − l)1/2
, l < 1,

α

(
2

χ
+ 1

)
= (1 − l)1/2, l > 1,
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Hysteresis
Motivation: static vs. cavitating bubble

Static bubble:

R

p
B

p
0

σ

Real static bubble behavior

pB = 2σ/R + p0,

where pB is the pressure inside
the bubble, p0 – pressure out-
side the bubble, σ > 0 is the
interfacial tension, and R is a
radius of the bubble.

Cavitating hydrofoil:

p

u
max

Bubble behavior:

p + ρu2/2 = pst,

where p is a dynamic pres-
sure, and pst is the pressure of
a fluid at rest (at stagnation
point).
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Hysteresis
Mechanical model of hysteresis: elastic bubble
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The mechanical analog of a bubble:

p = p0 + σ̃/R, p > p0,

i.e. the bubble grows when the ambient pressure, p =
pst − ρu2

max/2, decreases.

ucr,>max : R0 = σ̃
[
pst − p0 − ρ

∣∣ucr,>max

∣∣2/2
]−1

ucr,<max : R0 = σ̃
[
pst − p0 − ∆p0 − ρ

∣∣ucr,<max

∣∣2/2
]−1

R
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max
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Hysteresis
Model: potential function V (x) approach

Modified model:

ẍ + µẋ = −Vx(x ;α,w).

x

w

wc
wc

V(x)

V(x)

V(x)

Figure: Hysteresis curve in the (x ,w)-plane and corresponding potential
functions; solid black lines represent stable equilibria, while dashed lines are
unstable equilibria; dot-dash line represents a dynamic bifurcation (bubble
size grows with time unboundedly).
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Conclusions

A new physically motivated low-dimensional model of separation

bubble dynamics was constructed by contrasting and appealing to

similarities with actual bubble dynamicsa. The latter suggested
the proper choice of coarse variables and primary bifurcation;
an explaination of the nature of the hysteresis.

Suggestions for experimental studies to improve the model:
investigate the finite amplitude stability of separation bubbles;
determine the form of the state equation for separation bubble.

Open issues:
rigorous derivation of the low-dim model by coarsening NSEs;
more close connection with experimental observations and
development of a calibration procedure.
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