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A differentially heated rotating annulus
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A differentially heated rotating planet
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Simplification: Fluid Channel

Tb

Ta

Ω

D

D

R

2πλ

Ta

Slice and unfold

R

Tb

Ω

y

x



Symmetry

new reflection symmetry:

[RU ](x, y, z) =

[−u(2πλ− x, a+ b− y,D − z),−T (2πλ− x, a+ b− y,D − z)]
with translational symmetry

[TlU ](x, y, z) = [u(x+ l, y, z), T (x+ l, y, z)].

now have O(2) symmetry

primary transition is a steady-state bifurcation to stationary
waves

except that transition to vacillation will correspond to a Hopf
bifurcation



Overview of primary transition in channel

use linear stability to locate transition

look at steady-state mode-interactions

centre manifold reduction and normal forms are used to
deduce the form of the bifurcation

discuss numerics



Model of Channel

Navier-Stokes equations in three spatial dimensions

In the Boussinesq approximation

Assume channel is periodic in x

Rotating frame of reference

No-slip boundary conditions

Insulating rigid top and bottom

Parameters chosen to mimic previous annulus studies
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Steady-state (pitchfork) bifurcations in O(2)

2 real eigenvalues vanish as a parameter is varied

1 zero eigenvalue corresponds to a wave with wave number
m, and the other to −m
bifurcation to a group orbit (of stationary waves)
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Codimension-2 bifurcations (mode interactions)

2 pairs of real eigenvalues vanish

each pair corresponds to a different wave number m

interesting dynamics

need two parameters: Ω and ∆T



Summary of analysis

1 Trace out transition (bifurcation) curve

2 Locate the mode-interaction points (along transition curve)

3 Use center manifold reduction and write coefficients of
normal form equations in terms of :

basic state
eigenfunctions
Taylor coefficients of the center manifold function

4 Numerically approximate these unknown functions

Combination of numerical and analytical methods leads to
approximations of ‘normal form coefficients’
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Numerical approximations

Approximate systems of 3 steady PDEs in 2 spatial dimensions

Discretize on an N ×N grid

2nd-order centered finite differences

Boundary layers in steady flow

transform non-uniform grid to uniform grid

Use PETSc

sparse matrix storage and parallelization



Eigenvalue approximation

Linearize about steady solution

Assume eigenfunctions have the form

Φ(x, y, z) = Φ̂m(y, z)eimx/λ

get a series of generalized eigenvalue problems

λBmΦ̂m = AmΦ̂m

discretization leads to matrix eigenvalue problems



Computation of transition curve

can find transition by solving the nonlinear equations for the
basic state

f(u, T ) = 0

together with an additional condition

s = 0

where s is given by(
Am u
vT 0

) (
q
s

)
=

(
0
1

)
,

Am results from the discretization of Am, where u and v can
be some random vector (not in the range of the operator and
the adjoint operator, respectively)

for each m, use secant method to locate zero of s



The Primary Transition
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The Basic State (Steady, Uniform Flow)
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The Basic State (Steady, Uniform Flow)
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The Primary Transition
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The Primary Transition
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Primary transition dynamics

Transition curve composed of supercritical pitchfork bifurcations

Wave amplitude

Parameters
Critical parameters

Basic state unstable

Wave flow stable

Double pitchforks at isolated points along the transition curve

Correspond to mode interactions



Steady-state mode-interaction: Notation / Definitions

At Ω0 and ∆T0, the linearization about the steady solution
has

two pairs of zero eigenvalues µj
with corresponding eigenfunctions: Φ1, Φ1, Φ2, Φ2

with form Φj(x, y, z) = Φ̂j(y, z)eimjx/λ

and all other eigenvalues have negative real part

write the dependent variables as

U = z1Φ1 + z1Φ1 + z2Φ2 + z2Φ2 + Ψ



Reduced equations

Equation on the centre manifold

ż1 = µ1z1 + g11z
2
1 z̄1 + g12z1z2z̄2 + q1z̄

m2−1
1 zm1

2 + . . .

ż2 = µ2z2 + g21z1z̄1z2 + g22z
2
2 z̄2 + q2z

m2
1 z̄m1−1

2 + . . .

where all coefficients are real.

Write in polar coordinates (z1 = ρ1e
iθ1 and z2 = ρ2e

iθ2) and
introduce a ‘mixed phase’ ψ = m2θ1−m1θ2, after scaling get:

ρ̇1 = µ1ρ1 + aρ3
1 + bρ1ρ

2
2 + q′1ρ

m2−1
1 ρm1

2 cosψ + . . .

ρ̇2 = µ2ρ2 + cρ2
1ρ2 + dρ3

2 + q′2ρ
m2
1 ρm1−1

2 cosψ + . . .

ψ̇ = − (
m2q

′
1ρ

2
2 +m1q

′
2ρ

2
1

)
ρm2−2
1 ρm1−2

2 sinψ + . . .

where and the eigenvalues are written as:

µj = µj(Ω,∆T )



the coefficients a, b, c, d, q′1 and q′2 are functions of

the axisymmetric solution
the eigenfunctions
certain Taylor coefficients of the center manifold function, H



Mode interaction points

Occur at intersection of neutral stability curves (m1,m2)
Four distinct regions of fluid dynamics near each bifurcation:

µ2

µ1

µ2 = cµ1/a

µ2 = dµ1/b

m1 stationary wave flowSteady, uniform flow

m2 stationary wave flow

Bistability



Mode interaction points

Consider such a path through parameter space:
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Mode interaction points

Such a path through parameter space leads to the following
bifurcation diagram:
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Reduced equations

Equations on the centre manifold (in polar form), where the
‘mixed phase’ ψ = m2θ1 −m1θ2

ρ̇1 = µ1ρ1 + aρ3
1 + bρ1ρ

2
2 + q′1ρ

m2−1
1 ρm1

2 cosψ + . . .

ρ̇2 = µ2ρ2 + cρ2
1ρ2 + dρ3

2 + q′2ρ
m2
1 ρm1−1

2 cosψ + . . .

ψ̇ = − (
m2q

′
1ρ

2
2 +m1q

′
2ρ

2
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)
ρm2−2
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Mode interaction points

Depending on values of q′1 and q′2 may have:
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Next steps

Investigate transition from stationary waves to vacillating waves

corresponds to a Hopf bifurcation

need to continue steady solutions of Navier-Stokes in 3 spatial
dimensions

need to locate bifurcation

Use:

vorticity to eliminate pressure:

0 = ν∇2ω + (ω · ∇) u− (u · ∇)ω
0 = ∇2u +∇× ω

PETSc

Significantly more computationally challenging



Next steps

Have successfully computed stationary wave solutions
Netwon’s method
GMRES with ILU preconditioning for linear systems
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Figure: Temperature field of stationary wave solution at mid-depth



Computation of Hopf curve

Look for parameter values such that

J = L + iωI

is singular

Solve the nonlinear equations for the basic state

f(u, T ) = 0

together with an additional condition

s = 0

where s is given by(
J u
vT 0

) (
q
s

)
=

(
0
1

)
,

where u and v can be some random vectors (not in the range
of the operator and the adjoint operator, respectively)

use Broyden’s method to locate zero of s = s(p, ω)



Summary

Computed primary flow transition

Stationary waves equilibrate at transition (supercritical
pitchfork)

Mode interactions at intersection of neutral stability curves

Channel shows a remarkable similarity to the annulus

Suggests curvature of geometry not a significant factor

Future/Current work:

• Compute bifurcations from stationary waves :
vacillation and beyond


