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AUTO: A PROGRAM FOR THE AUTOMATIC BIFURCATION ANALYSIS
OF AUTONOMOUS SYSTEMS.

by
Eusebius Doedel
Computer Science Department
‘Concordia University
1455 de Maisonneuve Blvd. W,
Montreal, Quebec H3G M8

1. Introduction. We describe certain aspects of the
recently developed computer program AUTO for the numerical
analysis of autonomous systems of the form

(1.1) u'(t) = Flult),A), t>9, u,FeR™,

Here A i1s a free parameter. Such systems arise in many
areas, especiaiiy in the study of chemical reactions, in
population dynamics and in mathematical biology. Generally
one is interested in both steady state and periodic
solutions to {1.1). Since the system contains a free
parameter one expects branches of both types of solutions.
A steady state bifurcation point is the intersection point
of two branches of steady state solutions. A Hopf bi-
furcation point is the point where a branch of steady
states and a branch of periodic solutions intersect. {For °
background material see for example [3,5,6,8,11,12,15,28].)

Given f, the Jacobian of f, the derivative f,, a steady

state solution for some value of 2 and a number of control
parameters, AUTO has the following basic capabilities:

(1) Trace out branches of steady state solutions.
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{2) Accurately locate steady state bifurcation points.

(3) Switch automatically onto bifurcating branches of
steady states,

(4) Accurately locate Hopf bifurcation points,

{5) Switch automatically onto branches of periodic
solutions and trace out such branches.

(6} Compute past turning points without added difficulty,
both on branches of steady state solutions and on branches
of periodic solutions.

(7} Compute stable as well as unstable branches. For
periodic solutions this is made possible by reformulating
the problem as a boundary value problem on [§,2n].

(8) Adapt the mesh to the solution. The discretization
used is the method of orthogonal collocation with 2,3 or 4
collocation points per mesh interval,

(9) Adaptive stepsize along branches of periodic solutions.
(10)Automatic restarting at certain points.

(11)Store plotting information in files. These files can
he ihvestigated by an- interactive graphics program.

A more detailed treatment of some of the above mentioned
capabilities is given in Section 2. Particular attention

is paid to the continuation of branchgs of periodic
solutions. The continuation procedure presented is
especially well suited for difficult problems., Examples of
the application of AUTO to a representative set of equations
is given in Section 3.



Among previous computational work on Hopf bifurcation
problems we mention that of [23,24), where a very thorough
numerical treatment of a system of two chemical reaction
equations is reported. The initial value techniques used
there do not generalize to systems of dimension greater
than two, when unstable branches of periodic solutions are
. to be computed. Extensive numerical computations on the
Hodgkin-Huxley model are given in [18]. See also [22].
Also included in [18] is the computation of branches.
resulting from period doubling bifurcations. In AUTO this
added capability is intended to be implemented also. Com-
putational aspects of the Hopf bifurcation probTeﬁ are

also considered in [16], where projection methods are used.

2. The Continuation of Periodic Solutions. The computation

of branches of steady state solutions is an algebraic
problem, It consists of the bifurcation analysis of the
equation.

f(_U,)\)_ = f.

This can be accomplished numerically using the arclength-
continuation and branch switching techniques of [9]. (See
also [17].) The techniques of [9] apply in a very general
. setting. In fact the continuation of periodic solutions
can be treated in the same framework.

First we recall the basic features of the general procedure
in [9]: Consider the cperator equation

(2.1) Glu,r) = 2,
where A is a parameter and G a .nonlinear mapping from one
Hilbert space intg another. Let wz=(u,r). If there exists

some parametrized branch w(s) of solutions. to (2.1) then
under appropriate smoothness assumptions we have
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G'(w{s})) w'(s) = 0.

Thus the derivative-G' always has a nullspace along the
branch. Assume now that we have a solutian Wﬂ of {2.1},

i.e. Gtwg)=ﬁ, and that in addition the nullspace of G'(w@)

is spanned by a vector w Thus the nutlspace is one

H
g
dimensional. Let wm‘* be the adjoint element such that

wg'*wa' = 1. Then the inflated problem

(2.2}

which we write more compactly as
H{w,s) = @,

has the solution w=w{‘a when s = @, Further the derivative

G‘(wﬂ)
Hw(.wg,w) = . ,
wg’“

is clearly nonsingular. Hence the implicit mapping theorem
guarantees the existence of a branch of solutions w{s) for

small s.

Numerical techniques can be based directly on {(2.2). If
Glw) = ¢ reﬁresents a differential equatidn, then of course
the equation must be discretized first. Further for
numerical purpeses it is often more convenient to use the



approximation wm' = (w(s)nwﬁ)/s. If in addition we solve

(2.2) for only one value of s, say s=as, then (2.2)
becomes

G{w) = 9
(2.3}

* —
(w—wg) (w-wm)/as-as = @,

Essentially the same procedure can be used to switch
branches at a bifurcation point after the direction of the
bifurcating branch has been computed., 1In this situation one

replaces wﬂ in {2.2) by such a directian.

The general procedure of [9] outlined above has been applied
by various authors. See for example [2,4,7,18,13,21].

Now consider the problem of determining branches of
pericdic solutions to the autonomous system {1.1), First
note that not only the periocdic solution u, but alse its
period p changes along such a branch, To fix the period,
linearty map [@,p] into [@,2w]. This transforms the
differential equation into

(2.4} u'(t) = Flu,a),

b
2m

where the unknown period p now appears explicitly and where
2n-periodic solutions are to be determined, that is, we
impose the condition

(2.5) ul@) = uf{2m).

This effectively rep?aces the original problem by a boundary
value problem with non-separated boundary conditions. In



particular this makes the computation of asymptotically
unstable solutions possible. Unstable and therefore 7
unphysicdl solutions frequently must be computed in order to
reach stable solutions elsewhere on the branch.

Suppose Lkg,pw,ug(t}) defines a known periodic solution of

(2.4), (2.5), The objective is to set up the equations for
finding a solution néarby on the branch. A remaining
di-fficulty is the inherent non-uniqueness of u, due to the
fact that a periodic solution can be translated freely in
time. For numerical computation the new solution u must be
"anchored". There are many possible choices for an
additional equation to accomplish this. One is to éimp]y
fix one of the components of u at t=@. However the
resulting set of equations has an isolated solution only
under conditions that are not required for the underlying
problem itself. For theoretical purposes a better choice is
the orthogonality condition

(2.6)  (u(g) - uy(e))T Fluz(0),2) = 8,

which ensures that u{f@) on the orbit to be determined
‘occupies a similar position as ugtﬁ) on the known orbit,
Indeed continuation proofs can be based on the equations
(2.4)-(2.6). Below it will be shown, however, that an
integrated version of {(2.6) is more appropriate for
practical numerical computation.

The equations (2.4)-{2.6) can be viewed as being of the form
(2.1}, that is, they can be written as G(w) = @, with w =
{X,p,u). Thus from the general case it follows that we must

dadd the continuation equation

(..w~w¢)*(w-wﬁ)/as - As = @,
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which in this application can be written as

(2.7 CO-ap)Pras + cllompg) P
1 2
+ czf 2m (u-ug)T (u-uﬁ)/As'dt - As = @ .
39

Here the constant weights Cy» i=1,2,3, are included for

generality. The equations (2.4)-(2.7) can be used without
modification when turning points are present on a branch of
'ﬁeriodic solutions, that is, when either of the situations
in the diagrams below is encountered:

[lul] Hull

- 0

Indeed the capability to compute past turning points is the
main advantage of using the inflated system (2.3).

To itlustrate the peérformance of the computational scheme
(2.4)-{2.7) consider the simple problem

uy (i-k)u1 - u

(2.8) )
Upg' = Uy + iy

2

For all & the steady state uy = u, = @ is a solution. The
Jacobian of the right hand side of {2.8) has a conjugate
pair of eigenvalues cross the imaginary axis when % =1,
signalling a Hopf bifurcation point, The bifurcating branch
of periodic solutions is in this example a vertical line-
segment, (See Figure 1.,) The branch of periodic solutions
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does not extend to infinity however, as it would have done

for the linear problem without the u12 term. In fact the

branch has a limit point. When approaching this limit
point the phase cycles tend to a separatrix, while the _
period goes to infinity. This behaviour is displtayed iﬁ
the phase diagram of Figure 2. The labels in Figure 2
correspond to those in Figure 1, Figure 3 shows the second
solution component as a function of time. Note that along
the branch the maximum value of Uy is attained at different

values of the independent variable t. 1In other words the
peaks move as we go along the branch of periodic solutions.
What is worse, this motion becomes more pronounced as the
fronts get steeper. Such a property is very undesirable.
For 1f u has rapidly changing components, then an adaptive
mesh will be necessary. What may be a good mesh for a given
solution point on a branch of periodic solutions, may not

be good at all for a solution boint nearby on the branch, if
steep peaks are sﬁbject to translation, The result will be
that the equations (2.4)-(2.7) require a very small stepsize
As along the branch., Of course this unwanted property is
not inherent in the problem to be solved, but rather it is
due to the anchor equation (2.6).

To derive an alternative for {2.6) that performs better
~on difficult problems, assume again that (Ag,pﬁ,uﬁ}

represents the known solution and that a neighbouring
solution (X,p,u} is to be determined. If u(t) = vit) is

a solution then so is v(t+r) for any r. It is natural among
this infinity of solutions to seek the one that minimizes
the distance

2T _ 2
(2.9) fg (v{t+r) - “g(t)) dt

over r. In the example this would force the peaks to
remain approximately in the same place. The minimizing
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r* is obtained by setting the derivative of (2.9) with
respect to r equal to zero:

2w

g

(v(t+r®) - ug(t))v-(t+r*) dt = 9 .

Letting-u(t) = v(t+r") and approximating u'(t) by ug’(t) we
obtain

2

(2.6)* s, (ult) - uglt))uh(t) dt = B

Note that {2.6}* is nothing but an integrated version of
(2.6}, Also recall that while (2.6)* requires the distance
between u and ug to be minimized, there is also equation
(2.7} which essentially requires the distance between
{Ag,p@, ﬁg} and (A,p,u) to be equal to As.

Recomputing the bifurcation problem corresponding to
equation (2.8), but with {(2.6) replacing (2.6), we obtain
Figure 4 corresponding to the old Figure 3. The results
clearly show the advantage of using the modified anchor
)-K-

equation {(2.6)°. A complete argument to verify that use of

(2.6)* leads to a well-posed problem is not difficult.

3., Numerical Examples,. In this section we present the

results of applying AUTO to a number of examples. These
results are given in the form of bifurcation diagrams and
accompanying phase diagrams. Labels with accompanying
dashed line segments (----) in the*bifurcation diagrams
denote solution peints for which plotting information has
been stored., The freguency of storing p1otting information
is user controlled. Also user specified are the limits

of the bifurcation diagram as well as the maximum number

of steps along any branch. For periodic solutions the
number of meshpoints NTST is fixed and selected by the user.
Their distribution can be made to adapt automatically to
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the solution during computation along a branch, In the
bifurcation diagram NCOL denotes the number of collocation
points per mesh interval., The mesh salection algorithm
used is basically that of [19]. In fact the collocation
method employed can be viewed as a subset of COLSYS [1] for
the numerical solution of the special class of problems
considered in this paper. Such speciatization should result
in a more efficient code., Computation time and storage are
important considerations in AUTO, because in any given run
the system of autonomous eqguations may have to be solved
hundreds of times.

Exampie 3.1 The system considered is

= Asin(ul) -,

H

Zu} = Uy,

which has the steady state solution u1'= Uy = g for all M.

A Hopf bifurcation from the zero solution takes place at A=l
and a steady state bifurcation at A=2., Two other Hopf
bifurcation points are located on the secondary branch of
steady states. (See Figure 5 and the local enlargements in
Figures 6 and 7. Branches 1 and 2 in Figure 5 are steady
~states, while branches 3, 4 and -5 represent periodic
sclutions,} Disregarding other possible sclutions not
displayed in Figure 5, we note that for A in {g,1] there

is only the zero solution. When X becomes greater

than 1, a 1imit cycle forms around the zero steady state.
When ) passes the vale 2, two new soclutions branch off from
the zero steady state. When ) passes the value 2,54, Timit
cycles appear around these new steady states alse., As A
approaches the value 2.7@ these limit cycles grow and each
approaches a separatrix, whereby the period goes to infinity.
Simultaneously the outer large limit cycle contracts and
approaches the union of the limiting configurations of the
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two smailer 1imit cycles., The situation is iilustrated
graphically in Figure 8,

Example 3,2 A three dimensional example is

_ 3
u]' = (T-A)sén(u?) - sinLuz) - U,
uy,' = (2-A)sin{u,} + u2
b an 2
2
. .
ug' = 51n{u3) U, - ouy

~The bifurcation diagram generated by AUTO is given in
Figures 9 and 10. (Branches 1 and 2 in Figure 9 are steady
states, while 3 and 4 represent periodic solutions.)

There is one steady state bifurcation point and there are
three Hopf bifurcation points. The branch of periodic '
solutions (3) bifurcating from the zero steady state

branch {1} at A=1, reattaches itself to the nontrivial
steady state branch (Z) at x=1.88. The projection of

some 1imit cycles along this branch onto the ul,u3-plane
are given in Figure 11, The second periodic branch (4)

in the diagram does not reattach itself to any steady state
branch. '

Finally consider a physically more realistic example.
For previous computations see [23,247,

Example 3.3 The dynamic behaviour of a single first order
chemical reaction in a continuously stirred tank reactor

can be modelled by the ordinary.differential equation

'u1" = _u.i +B Da (}-UZ)EXP(UE) - E’u}

=
-
It

) -u, + Da (1-u2)exp£u}),
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where B,f and Da are dimensionless parameters, For p=3
and B=14 the bifurcation diagram is given in Figure 12,
There are two Hopf bifurcation points. Figure 13 displays
the second solution component versus time along the branch
of periodic solutions.,
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